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Abstract
Non-linear susceptibilities for use in describing the second-harmonic generation
(SHG) recently observed in the hexagonal manganites RMnO3 (R = Sc, Y, Ho,
Er, Tm, Yb, Lu) below the Néel temperature TN are derived. Their explicit
expressions show that they should give rise to quite different spectra according
to whether the magnetic ordering is P6′3cm

′ or P6′3c
′m. The excited states

around 2.45 eV are treated as excitons in the antiferromagnetic phase. The
calculated SHG spectra are compared with experiments and it is found that
they can be used to explain the observed features and spectra satisfactorily.

1. Introduction

Optical second-harmonic spectroscopy has proved to be a powerful means of determination of
complex magnetic structures—for example, the non-collinear antiferromagnetic structure of
the hexagonal manganites RMnO3 (R = Sc, Y, Ho, Er, Tm, Yb, Lu) [1–3].

These compounds are paraelectric above TC (between 550 and 1000 K) with the space
group P63/mmc and ferroelectric below TC with the space group P63cm. They are anti-
ferromagnetic below TN which is around 80 K.

We take the case of YMnO3 as our first example. Below TN = 73.49 K, second-harmonic
generation (SHG) is observed in the region around 2.45 eV; it corresponds to the magnetic
non-linear susceptibility χ(c)yyy . This corresponds to the magnetic space group P6′3cm

′ and we
know that the spin ordering should be as shown in the left-hand part of figure 1 of reference [3],
i.e., α1-type with the angle ϕ = 0. The susceptibility here is the yyy-component of a time-
non-invariant tensor (c-tensor) as indicated by the superscript (c), with the xy-axes given in the
figure referred to above. The two peaks in the SHG spectra around 2.45 eV seem to indicate
the existence of two excited levels at that energy and constructive interference between the
susceptibilities associated with each level (figure 1(b) of reference [1]).

On the other hand, in ErMnO3, SHG below TN = 78.64 K at around 2.45 eV is observed
only in the configuration corresponding to the non-vanishing susceptibility χ(c)xxx . This means
that the magnetic space group for this system is P6′3c

′m and the spins of the Mn ions are
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all rotated by an angle of 90◦ compared to those of YMnO3—that is, the ordering is of α2-
type. There are two peaks also in this case, but with destructive interference with a dip
between them [1].

The spectra of HoMnO3 (TN = 74.87 K) are interesting in that they can show either of
the behaviours described above depending on the temperature. The peaks at 2.45 eV show
constructive interference for χ(c)yyy below TR = 42 K and destructive interference for χ(c)xxx above
TR due to the rotation of the spins by 90◦ in the xy-plane [3].

The observation of the time-invariant χ(i)zxx related to the ferroelectricity gives the position
of an excited level at 2.7 eV for all of these systems [2].

The purpose of the present paper is to try to explain these features of the SHG spectra
as well as to clarify the relations between them and the magnetic structures of the hexagonal
manganites through the calculation of the susceptibilities χ(c)yyy and χ(c)xxx , which are simply
denoted as χyyy and χxxx in the present paper. In the next section we describe the crystal
magnetic symmetry of the present system. The environment of the Mn ions to be treated
here is unusual in that Mn3+ ions with total spin S = 2 are surrounded by fivefold-coordinated
(trigonal) bipyramids of O2− ions. The electronic states involved will be discussed in section 3.
There are six Mn sites in a unit cell of the antiferromagnetic phase. In section 4, we describe
how to correlate wave functions at six different sites. Section 5 is the core of the present paper.
We find here that the single-ion theory does not work well, and develop the exciton theory for
the excited states around 2.45 eV. The susceptibilities obtained in the exciton mode turn out to
be satisfactory. They predict two excited levels near the single level expected in the single-ion
theory and quite different interference behaviours for χyyy and χxxx . In section 6.1, we give a
brief discussion of possible causes of clamping of the two order parameters, ferroelectric and
antiferromagnetic. A comparison of the calculated spectra with the observed ones is made in
section 6.2. The final section is devoted to a discussion and conclusions. In the appendix, the
mechanism of exciton transfer treated in section 5.2 is described, so that the physical meanings
of the parameters which appeared in the exciton theory are made clear.

2. Crystal and magnetic structure of RMnO3

The crystal structure of ferroelectric RMnO3 (R = Y, Ho, Er, Lu) is reported by Yakel et al [4].
The x- and y-axes chosen in the present paper coincide with theirs and those of reference [3]
as well.

There are six Mn ions in a magnetic unit cell. Their sites in the unit cell and our choice of
local axis ξi and ηi are shown in figure 1, where the local ξ1- and η1-axes at site 1 are chosen
parallel to the global x- and y-axes.

As seen in the figure, three Mni ions (i = 1, 2, 3) are assumed to lie on the z = 0 plane,
while the other three with i = 4, 5, 6 are on the z = c/2 plane, where c is the height of the unit
cell. Let us further assume that the coordinate of Mn1 is given by (d, 0, 0) with d ∼ 0.3a and
that of Mn4 by (−d, 0, c/2) in terms of the lattice constant a, so that either σd(τ ) or θσd(τ )
carries Mn1 into Mn4 with its environment in the crystal, where σd(τ ) is the reflection in the
yz-plane followed by the translation τ = (0, 0, c/2) and θ is the time reversal.

Suppose the local ξi- and ηi-axes are obtained by rotating the global x- and y-axes by an
angle ϑi . We then have the following relations:

Px = Pξi cosϑi − Pηi sin ϑi (1)

Py = Pξi sin ϑi + Pηi cosϑi (2)

between the components of electric dipole-moment operators at different sites, which will be
used in section 5.1.
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Figure 1. Six Mn sites in the unit cell and the local coordinate axes.

To avoid confusion, we follow Fiebig et al [3] in the choice of symmetry operations of
the two possible magnetic space groups (a) P6′3cm

′ (spins of Mn1 ‖ x) and (b) P6′3c
′m (spins

of Mn1 ‖ y). They are given by

(a) P6′3cm
′: 6′3 = θC6(τ )

c = σd(τ ) (3)

m′ = θσv
(b) P6′3c

′m: 6′3 = θC6(τ )

c′ = θσd(τ ) (4)

m = σv
where σv is the reflection in the xz-plane. It must be mentioned that the intermediate symmetry
P6′3 is possible, as found in ScMnO3, where we have the spins of Mn1 making any angle ϕ
with the reference axis [5].

For the spin ordering corresponding to these magnetic space groups, the reader is referred
to figure 1 of reference [3]. Although we have mentioned in the above that the spins of Mn1

are parallel to x in P6′3cm
′, this is not quite correct. They may also have z-components, i.e.,

they can cant out of the xy-plane without lowering the symmetry described by this group. In
contrast to this, the spins of Mn1 have to be parallel to y in P6′3c

′m.

3. Electronic states of a Mn3+ ion in RMnO3

Let us first consider the electronic states of a Mn1 ion in the paraelectric phase described
by P63/mmc [6]. The Mn1 in this phase is located at the centre of a fivefold-coordinated
(trigonal) bipyramid of O2− ions with D3h = 6̄m2 symmetry with the twofold-symmetry axis
of the bipyramid chosen as the x-axis [4, 7].

As the energy level scheme for the four localized d electrons with their spins parallel
(S = 2) in this unusual fivefold coordination, we adopt the one proposed by reference [1]. In
this model, the ground state is the orbital singlet 5A1 ≡ 5�1. The first and second (quintet)
excited states are 5E2 ≡ 5�5 and 5E1 ≡ 5�6, respectively.

The wave functions corresponding to these levels are given by

�(E1a) = �zx (5)

�(E1b) = �zy (6)

�(E2a) = c�x2−y2 + c′�x (7)
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�(E2b) = c�−2xy + c′�y (8)

�(A1) = �z2 (9)

with c2 + c′2 = 1, where we have specified only the symmetry labels for the orbital states. The
spin quantum numbersMx orMy are not given explicitly. For degenerate representations, the
two substates of E1, for example, are denoted as E1a and E1b. The functions on the right-hand
side of these equations are given by

�zx = 1√
2
(−�(D,+1) +�(D,−1)) (10)

�zy = i√
2
(�(D,+1) +�(D,−1)) (11)

�x2−y2 = 1√
2
(�(D,+2) +�(D,−2)) (12)

�−2xy = i√
2
(�(D,+2)−�(D,−2)) (13)

�z2 = �(D, 0) (14)

in terms of d4 5D wave functions. Note that (�x,�y) in equations (7) and (8) are the states
with odd parity, transforming like (x, y) under D3h. The presence of these states on the right-
hand side of these equations is, of course, due to the lack of the inversion symmetry in the
present system. We assume the coefficient c′ to be small but not negligible compared with
c. In other words, we expect appreciable d–p mixing for the present system. It makes direct
electric dipole transitions from �(A1) to �(E2a) and �(E2b) possible and the transitions are
associated with the strong absorption in YMnO3 above 1.55 eV [1].

In the ferroelectric phase, the Mn ion is surrounded by a distorted (and tilted) bipyramid
of O2− ions, the site symmetry being Cs = m = {E, σv}, where σv = σy , the reflection in
the xz-plane. The effect of this distortion will be treated as a perturbation due to fields having
symmetry lower than D3h. Naturally, the compatibility between D3h and Cs (resulting from
the descent in symmetry) restricts the symmetry of the perturbing field Vm as follows:

Vm = V (B2) + V (E1a) + V (E2a) (15)

where V (�) = ∑
i vi(�). Let us give, for simplicity, only terms of lowest orders for the

low-symmetry fields: vi(B2) = Azi , vi(E1a) = Bzixi , and vi(E2a) = Cxi + D(x2
i − y2

i ) in
terms of the coordinates (xi, yi, zi) for the ith electron.

The field V (E2a) lifts the twofold degeneracy of the E1 as well as that of E2 states of D3h,
whereas V (B2) and V (E1a) bring in the mixing among the unperturbed states:

%1 = �(E1a) +�(E2a)〈E2a|Vm|E1a〉/&E(1, 3) (16)

%2 = �(E1b) +�(E2b)〈E2b|Vm|E1b〉/&E(2, 4) (17)

%3 = �(E2a)−�(E1a)〈E1a|Vm|E2a〉/&E(1, 3) (18)

%4 = �(E2b)−�(E1b)〈E1b|Vm|E2b〉/&E(2, 4) (19)

%0 = �(A1)−�z〈�z|Vm|A1〉/&Ez (20)

where %1,3 are even under σv (�1 of Cs in Bethe’s notation), while %2,4 are odd (�2). The
energy of the state %i will be denoted as Ei in the following with &E(i, j) = Ei − Ej .
The wave function �z transforming like z represents an odd-parity state, with its excitation
energy &Ez.
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Unlike in figure 2 of reference [1], in this paper the highest level is assigned to the state
5E1a ≡ 5�1 with its energy E1, because the corresponding peak at 2.7 eV is observed in
χzxx-spectra of YMnO3. This then implies that our 5E1b ≡ 5�2 with its energy E2 is to be
associated with the peak at 2.45 eV of the χyyy-spectra.

Let us consider the spin–orbit interaction

Hso = λS · L (21)

as the next perturbation, where λ is related to the parameter ζ for a single electron as λ = ζ/4.
The matrix of the spin–orbit interaction is given by




�(A1) �(E1a) �(E1b) �(E2a) �(E2b)

�(A1) 0 −i
√

3λSy i
√

3λSx 0 0

�(E1a) i
√

3λSy 0 −iλSz −iλcSy −iλcSx

�(E1b) −i
√

3λSx iλSz 0 −iλcSx iλcSy
�(E2a) 0 iλcSy iλcSx 0 2iλc2Sz

�(E2b) 0 iλcSx −iλcSy −2iλc2Sz 0



. (22)

Note that we are not specifying the direction of the spin yet, so the spin components involved are
left simply as operators within the spin space. The spin–orbit interaction introduces further
mixing among the unperturbed states which makes spin-dependent transitions possible in
section 5.

4. Choice of wave functions at different sites

Wave functions ψλ(α) (ψλ ≡ %λ, including spin) at different sites α are related to each other
by the following relations:

C3ψλ(1) = ψλ(2) C−1
3 ψλ(1) = ψλ(3) (23)

C3ψλ(4) = ψλ(5) C−1
3 ψλ(4) = ψλ(6). (24)

We further have, in case (a),

σd(τ )ψ1(1) = ψ1(4) (25)

σd(τ )ψ2(1) = −ψ2(4) (26)

and, in case (b),

θσd(τ )ψ1(1) = ψ1(4) (27)

θσd(τ )ψ2(1) = −ψ2(4). (28)

Note that the λ-indices 1 and 2 refer to the two components E1a and E1b of the doublet 5E1,
respectively, and that the orbital part of ψ1(1) is even, while that of ψ2(1) is odd under σv .

5. Calculation of non-linear susceptibilities

Let us first write down the expressions for the non-linear susceptibilities involved in the present
problem [8–10], before proceeding to the details of the calculation.

The expression for the susceptibility may be given as

χαβγ = 1

ε0h̄
2

∑
i

ρi

[∑
m,k

(P P P )imki

(ωmi − 2ω)(ωki − ω) +
∑
m,m′

(P P P )imm′i

(ωmi + ω)(ωm′i − ω)

+
∑
m,k

(P P P )ikmi

(ωmi + 2ω)(ωki + ω)

]
(29)
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with ωmi denoting the energy difference between the states |m〉 and |i〉, ρi the thermal
distribution of the initial state |i〉, and

(P P P )imki = (Pα)im(Pβ)mk(Pγ )ki
(P P P )imm′i = (Pα)im(Pβ)mm′(Pγ )m′i (30)

(P P P )ikmi = (Pα)ik(Pβ)km(Pγ )mi.
The dominant term corresponding to the two-photon resonance is given by

χαβγ = 1

ε0

∑
i

ρi
∑
m

(Pα)im(PβPγ )mi

(&Emi − 2h̄ω)&E
(31)

with the closure approximation [9], where &Emi = h̄ωmi and 1/&E stands for a certain
average of 1/(&E(k, i)− h̄ω) over odd-parity states |k〉.

If we choose P and the states |m〉and |i〉 of equation (29) as those of the Mn1 ion, the
expression leads to the susceptibility χαβγ for a single ion of section 5.1. If we choose as
P the sum of the dipole moments of Mn ions within a unit cell and as the states |m〉 those
representing the coherent excitation transfer, i.e., the exciton states, equation (29) serves as the
expression for χ per unit cell as will be shown in section 5.3.

The following relations which were important in the previous treatment [9, 10] are also
found to be useful in the present calculation:

〈Rψ |A|Rψ ′〉 = 〈ψ |R−1AR|ψ ′〉, (32)

〈θRψ |A|θRψ ′〉 = 〈ψ |θ−1R−1ARθ |ψ ′〉∗ (33)

where A is a Hermitian operator, while R is any unitary symmetry operation such as C3.

5.1. Single-ion theory

To calculate susceptibilities within the single-ion theory, we assume that χααα per unit cell
(α = x or y) is given by the sum of the contributions χααα(i) (i = 1, 2, . . . , 6) from the six
ions Mni in the unit cell, so

χααα =
3∑
i=1

χααα(i) +
6∑
i=4

χααα(i). (34)

After some simple algebraic calculation using equations (1) and (2), we find

3∑
i=1

χααα(i) = 3

4

{
χααα(1)−

∑
χαββ(1)

}
(35)

where the sum on the right-hand side is defined by∑
χαββ(1) = χαββ(1) + χβαβ(1) + χββα(1). (36)

Note that β = y when α = x and vice versa. In a similar way, we have

6∑
i=4

χααα(i) = 3

4

{
χααα(4)−

∑
χαββ(4)

}
. (37)

Now, in case (a), i.e., for P6′3cm
′, the operation σd(τ ) with equation (32) leads to

χyyy(4) = χyyy(1) χyxx(4) = χyxx(1) etc. (38)

In case (b), i.e., for P6′3c
′m, we have, similarly,

χxxx(4) = −χ∗xxx(1) χxyy(4) = −χ∗xyy(1) etc (39)
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with the aid of equation (33).
In case (a), only χyyy is non-vanishing. It is purely imaginary, because χyyy(1), etc, are

themselves purely imaginary. In case (b), only χxxx is non-vanishing and purely imaginary,
because only the imaginary parts of χxxx(1), etc, enter here. That is, we find for case (a) that
the susceptibility per unit cell is expressed in terms of those for the ion Mn1 as

χyyy = 3

2

(
χyyy(1)−

∑
χyxx(1)

)
(40)

and for the case (b), it may be written as

χxxx = i
3

2
Im

(
χxxx(1)−

∑
χxyy(1)

)
. (41)

An i-tensor χzxx has also been observed by Fröhlich et al [1]. With the P63cm symmetry
of the ferroelectric phase, the susceptibility χzxx for the unit cell is given by

χzxx = 3(χzxx(1) + χzyy(1)) (42)

in terms of the susceptibility for Mn1. In a similar way, we find

χzzz = 6χzzz(1) (43)

and

χxxz = 3(χxxz(1) + χyyz(1)) (44)

for other components of the i-tensor.
We note that the symmetry restrictions on the χ -tensor per unit cell result from those for

the individual ions.
With these results, we now calculate the right-hand side of equation (31) for the ion Mn1

and substitute the results obtained into the right-hand side of equations (40) and (41) given
above. The components of the i-tensor may be obtained in a similar fashion.

As seen below, the susceptibilities obtained from the single-ion theory cannot actually
explain all features of the observed SHG spectra. They certainly corroborate that the non-
vanishing χyyy for case (a) and χxxx for case (b) are proportional, respectively, to the sublattice
magnetizations (a) S ‖ x and (b) S ‖ y. The expressions for the susceptibilities obtained
predict, however, resonant SHG only at energies E1 and E2, while this is not the case for the
observed spectra. Experimentally, two lines are found at the position of E2 ∼ 2.45 eV, and
their interference behaviours in cases (a) and (b) are quite different—that is, constructive in
case (a) and destructive in case (b). However, we are going into some detail in the calculation,
because the results clearly suggest the possibility of a drastic difference in SHG accompanied
by the rotation of the spin direction from x to y by 90◦, and serve as an introduction to the
treatment developed in the next subsection.

Starting from equations (40) and (41), we obtain the susceptibilities in the single-ion
approximation as

χααα = χ(1)ααα + χ(2)ααα (45)

where α = x or y. As will be seen below, χ(1) is proportional to the field V (E1a) ∝ zx, while
χ(2) is to V (B2) ∝ z.

The susceptibilities χ(1)ααα are given by

(a) ε0χ
(1)
yyy =

3

2

[ −(P̂y)01(P2a)10

(E1 − 2h̄ω)&E
+
(P̂x)02(P2b)20

(E2 − 2h̄ω)&E

+
(Px)01(P̂2b)10

(E1 − 2h̄ω)&E
+
−(Py)02(P̂2a)20

(E2 − 2h̄ω)&E

]
(46)
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and

(b) ε0χ
(1)
xxx = i

3

2
Im

[
(P̂x)01(P2a)10

(E1 − 2h̄ω)&E
+
(P̂y)02(P2b)20

(E2 − 2h̄ω)&E

+
(Px)01(P̂2a)10

(E1 − 2h̄ω)&E
+
(Py)02(P̂2b)20

(E2 − 2h̄ω)&E

]
(47)

where we have denoted, for example, the matrix elements ofPy connecting%0 and%1 perturbed
by the spin–orbit interaction as (P̂y)01, etc; these are called the spin-dependent transition
moments.

The spin-dependent transition moments are given by

(P̂y)01 = +〈A1|Py |E2b〉iλc〈Sx〉/&E(1, 4) (48)

(P̂x)02 = +〈A1|Px |E2a〉iλc〈Sx〉/&E(2, 3) (49)

(P̂x)01 = +〈A1|Px |E2a〉iλc〈Sy〉/&E(1, 3) (50)

(P̂y)02 = −〈A1|Py |E2b〉iλc〈Sy〉/&E(2, 4). (51)

Anticipating the final result, we have replaced here the spin operators Sx,y by their thermal
averages 〈Sx,y〉 in the ground state, which are essentially the sublattice magnetizations in cases
(a), (b). To show that this is a valid procedure is not so difficult, if we examine the expressions
for the susceptibilities to be derived later, and remember that the excitation energies are assumed
to be independent of the spin directions in the present treatment.

The operators P2a and P2b which transform like the bases E2a and E2b are defined by

P2a = P 2
x − P 2

y (52)

P2b = −2PxPy (53)

and their matrix elements are given by

(P2a)10 = (〈E1a|Vm|E2a〉/&E(1, 3))〈E2a|P2a|A1〉 (54)

(P2b)20 = (〈E1b|Vm|E2b〉/&E(2, 4))〈E2b|P2b|A1〉. (55)

The spin-independent transition moments are obtained as

(Px)01 = 〈%0|Px |%1〉 = 〈A1|Px |E2a〉〈E2a|Vm|E1a〉/&E(1, 3) (56)

(Py)02 = 〈%0|Py |%2〉 = 〈A1|Py |E2b〉〈E2b|Vm|E1b〉/&E(2, 4). (57)

For χ(2)ααα , we have

(a) ε0χ
(2)
yyy =

3

2

[
(P̄x)01(P̂2b)10

(E1 − 2h̄ω)&E
+
−(P̄y)02(P̂2a)20

(E2 − 2h̄ω)&E

]
(58)

and

(b) ε0χ
(2)
xxx = i

3

2
Im

[
(P̄x)01(P̂2a)10

(E1 − 2h̄ω)&E
+
(P̄y)02(P̂2b)20

(E2 − 2h̄ω)&E

]
. (59)

The matrix elements of P̂2a, etc, are given by

(P̂2b)10 = −i(λc〈Sx〉/&E(1, 4))〈E2b|P2b|A1〉 (60)

(P̂2a)20 = −i(λc〈Sx〉/&E(2, 3))〈E2a|P2a|A1〉 (61)

(P̂2a)10 = −i(λc〈Sy〉/&E(1, 3))〈E2a|P2a|A1〉 (62)

(P̂2b)20 = +i(λc〈Sy〉/&E(2, 4))〈E2b|P2b|A1〉. (63)
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We have another kind of spin-independent transition moment appearing in χ(2)ααα:

(P̄x)01 = 〈%0|P̄x |%1〉 = −〈A1|Vm|�z〉〈�z|Px |E1a〉/&Ez (64)

(P̄y)02 = 〈%0|P̄y |%2〉 = −〈A1|Vm|�z〉〈�z|Py |E1b〉/&Ez. (65)

Matrix elements of orbital operators appearing in the susceptibilities will now be expressed in
terms of the parameters defined through the following equations:

〈A1|Px |�x〉 = 〈A1|Py |�y〉 = p (66)

〈�x2−y2 |V (E1a)|E1a〉 = −〈�−2xy |V (E1a)|E1b〉 = vzx (67)

〈�x |V (B2)|E1a〉 = 〈�y |V (B2)|E1b〉 = vz (68)

〈E2a|V (E2a)|E1a〉 = 〈E2b|V (E2a)|E1b〉 = 0 (69)

〈�x2−y2 |P2a|A1〉 = 〈�−2xy |P2b|A1〉 = q (70)

〈A1|V (B2)|�z〉 = v̄z (71)

〈�z|Px |E1a〉 = 〈�z|Py |E1b〉 = p̄. (72)

In deriving these relations, we have kept in mind the reduction of the product representations
given by

E1 × E1 = A1 + A2 + E2 (73)

E2 × E2 = A1 + A2 + E2 (74)

E1 × E2 = B2 + B1 + E1 (75)

together with the Wigner–Eckart theorem [7].
With a simplifying assumption that terms proportional to c′2 may be neglected, we are able

to calculate χ , i.e., the right-hand side of equations (46) and (47), in terms of the parameters
defined above, and the results are

(a) ε0χ
(1)
yyy = −i

3

2
c3c′pq〈Sx〉

×
[
(λ/&E(1, 4))vzx/&E(1, 3) + (vzx/&E(1, 3))λ/&E(1, 4)

(E1 − 2h̄ω)&E

+
(λ/&E(2, 3))vzx/&E(2, 4) + (vzx/&E(2, 4))λ/&E(2, 3)

(E2 − 2h̄ω)&E

]
(76)

and

(b) ε0χ
(1)
xxx = 0. (77)

We thus find that the first line of equation (46) is equal to the second, so it is simply doubled,
whereas that of equation (47) is cancelled by the second. Therefore, only χ(2)xxx remains in
case (b).

The susceptibilities χ(2)ααα are proportional to v̄z and are given by

(a) ε0χ
(2)
yyy = i

3

2
c2 v̄z

&Ez
p̄q〈Sx〉

[
λ/&E(1, 4)

(E1 − 2h̄ω)&E
− λ/&E(2, 3)

(E2 − 2h̄ω)&E

]
(78)

and

(b) ε0χ
(2)
xxx = i

3

2
c2 v̄z

&Ez
p̄q〈Sy〉

[
λ/&E(1, 3)

(E1 − 2h̄ω)&E
− λ/&E(2, 4)

(E2 − 2h̄ω)&E

]
. (79)

According to equation (42), the expression for the i-tensor χ(i)zxx ≡ χzxx is given by

ε0χzxx = 3
(Pz)01(P

2
x + P 2

y )10

(E1 − 2h̄ω)&E
. (80)
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The matrix elements appearing here are given by

(Pz)01 = −〈A1|Pz|�z〉〈�z|V (E2a)|E1a〉/&E(z, 1)
− 〈A1|V (E2a)|%3〉〈%3|Pz|E1a〉/&E(3, 0) (81)

and

(P 2
x + P 2

y )10 = 〈E1a|V (E1a)|A1〉
&E(1, 0)

〈A1|P 2
x + P 2

y |A1〉. (82)

The expression for χzzz takes the following form:

ε0χzzz = 6
(Pz)01(P

2
z )10

(E1 − 2h̄ω)&E
(83)

with

(P 2
z )10 = 〈E1a|V (E1a)|A1〉

&E(1, 0)
〈A1|P 2

z |A1〉. (84)

The component χxxz is given by

ε0χxxz = 3

{
(Px)01(PxPz)10

(E1 − 2h̄ω)&E
+
(Py)02(PyPz)20

(E2 − 2h̄ω)&E

}
. (85)

The matrix element (Px)10 here is given by the sum of the right-hand sides of equations (56)
and (64), and (Py)20 is given by the sum of those of equations (57) and (65). We also find

(PxPz)10 = 〈E1a|PxPz|A1〉 (86)

(PyPz)20 = 〈E1b|PyPz|A1〉. (87)

Note that the fields V (E1a) and V (B2) change sign when operated on by σh (reflection in the
xy-plane, z → −z). This corresponds to the change in the sign of χzxx , etc, when one goes
over from one ferroelectric domain to another.

Let us derive, finally, the expression for the susceptibility corresponding to the resonant
SHG at energies E3 and E4. Corresponding to equation (46), we have

(a) ε0χyyy = 3

2

[ −(P̂y)03(P2a)30

(E3 − 2h̄ω)&E
+
(P̂x)04(P2b)40

(E4 − 2h̄ω)&E

+
(Px)03(P̂2b)30

(E3 − 2h̄ω)&E
+
−(Py)04(P̂2a)40

(E4 − 2h̄ω)&E

]
(88)

where

(P̂y)03 = +〈A1|Py |E2b〉(−2i)λc2〈Sz〉/&E(3, 4) (89)

(P̂x)04 = −〈A1|Px |E2a〉2iλc2〈Sz〉/&E(3, 4) (90)

and

(P̂2b)30 = 2i(λc2〈Sz〉/&E(3, 4))〈E2b|P2b|A1〉 (91)

(P̂2a)40 = 2i(λc2〈Sz〉/&E(3, 4))〈E2a|P2a|A1〉. (92)

It is easy to show that (Px)03 = (Py)04 = c′p and (P2a)30 = (P2b)40 = cq, so we obtain

(a) ε0χyyy = i
3

2
c3c′pq〈Sz〉

[
2λ/&E(3, 4)

(E3 − 2h̄ω)&E
− 2λ/&E(3, 4)

(E4 − 2h̄ω)&E

]
(93)

which is proportional to 〈Sz〉. This suggests that canting of the spins in this case may be
confirmed by the observation of SHG at E3 and E4. Note also that χyyy here is independent
of the direction of the electric polarization, unlike the susceptibilities at E1 and E2.
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Examination of the expression for χxxx shows that

(b) ε0χxxx = 0 (94)

under the same approximation, in accordance with the vanishing of 〈Sz〉 in case (b).
An expression similar to equation (85) can be obtained for χxxz atE3 andE4 by replacing

(%1, E1) and (%2, E2) by (%3, E3) and (%4, E4), respectively.

5.2. Exciton theory

Since the single-ion theory does not work well, as pointed out in the paragraph preceding the
one containing equation (45), we consider in this subsection the effect of excitation transfer
among the Mn ions and examine whether it can explain the observed features of the spectra.

The theory of Frenkel excitons in magnetic crystals is well developed [11]. We first give an
outline of the theory, simply because we need to explain the notation adopted in this subsection.

The ground state of the whole system is described as

%g =
∏
nβ

ψnβ (95)

where ψnβ represents the ground state of the Mn ion at the β (=1, . . . , 6) site of the nth cell.
The ground-state wave function ψ0 β=1 behaves like z2(�1) under σv . When one of the Mn
ions, i.e., the one at (mα), is excited to the state ψmαλ, we have the localized excited state

%mαλ = ψmαλ
∏
nβ

′
ψnβ (96)

where the prime on the symbol for the product indicates that the case nβ = mα is to be
excluded. The excited-state wave functions for Mn1 in the 0th cell, ψm=0 α=1 λ=1,2, are the
states%1,2 of section 3, which are perturbed by Vm as well as the spin–orbit interaction. Their
unperturbed orbital parts transform like zx(�1) and zy (�2), respectively.

Then, the exciton states at the � point (k = 0) are given by

%λ(α) = 1√
N

∑
m

%mαλ (97)

whereN represents the number of unit cells. The matrix elements of the Hamiltonian involving
the excitation transfer can be calculated as

Hαλ,α′λ′ = 〈%λ(α)|H|%λ′(α′)〉
=
∑
n

〈%m=0αλ|H|%nα′λ′ 〉 =
∑
n

〈ψ0αλψnα′ |W0α,nα′ |ψ0αψnα′λ′ 〉 (98)

and the excited eigenstates are obtained from

%i =
∑
αλ

%λ(α)c
i
αλ. (99)

The coefficients ciαλ are determined from∑
α′λ′

Hαλ,α′λ′c
i
α′λ′ = Eiciαλ. (100)

In equation (98), the interactionW0α,nα′ describes the transfer of excitation between ions
at (0α) and (nα′), i.e., the de-excitation from the excited state λ′ at (nα′) and excitation to the
excited state λ at (0α). The derivation of this interaction and its explicit expression are given
in the appendix.

According to equation (A.17), for example, in equation (98)

W01,n2 = kxξw(1y, 2η) + kyηw(1x, 2ξ)− kxηw(1y, 2ξ)− kyξw(1x, 2η). (101)
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Making use of equation (A.21) and similar equations, we obtain (H)αλ,α′λ (λ = 1, 2):




1 2 3 4 5 6

1 0 −Kλ −Kλ −K ′λ Kλ Kλ

2 −Kλ 0 −Kλ Kλ −K ′λ Kλ

3 −Kλ −Kλ 0 Kλ Kλ −K ′λ
4 −K ′λ Kλ Kλ 0 −Kλ −Kλ
5 Kλ −K ′λ Kλ −Kλ 0 −Kλ
6 Kλ Kλ −K ′λ −Kλ −Kλ 0




(102)

where

K1 = −F12

∑
n

kxξ (01, n2) K2 = −F12

∑
n

kyη(01, n2) (103)

K ′1 = −F14

∑
n

kxξ (01, n4) K ′2 = −F14

∑
n

kyη(01, n4) (104)

K1 = F15

∑
n

kxξ (01, n5) K2 = F15

∑
n

kyη(01, n5) (105)

and we have (H)α1,α′2 = (H)α′2,α1:




1 2 3 4 5 6

1 0 −√3K
√

3K 0
√

3K −√3K

2
√

3K 0 −√3K −√3K 0
√

3K

3 −√3K
√

3K 0
√

3K −√3K 0

4 0
√

3K −√3K 0 −√3K
√

3K

5 −√3K 0
√

3K
√

3K 0 −√3K

6
√

3K −√3K 0 −√3K
√

3K 0




(106)

where

K = − 1√
3
F12

∑
n

kxη(01, n2) (107)

K = 1√
3
F15

∑
n

kxη(01, n5). (108)

Apparently, the 12-dimensional matrix Hαλ,α′λ′ has the symmetry of C6v, so its diag-
onalization is made easy by making linear combinations of %λ(α) corresponding to the
irreducible representations of C6v given in table 1.

Table 1. The character table for C6v; (a) 6′mm′, (b) 6′m′m.

(a) E 2θC6(τ ) 2C3 θC2(τ ) 3σd(τ ) 3θσv
(b) E 2θC6(τ ) 2C3 θC2(τ ) 3θσd(τ ) 3σv

A1 1 1 1 1 1 1 z

A2 1 1 1 1 −1 −1 x1y2 − y1x2

B1 1 −1 1 −1 1 −1 y3 − 3x2y

B2 1 −1 1 −1 −1 1 x3 − 3xy2

E1 2 1 −1 −2 0 0 (x, y)

E2 2 −1 −1 2 0 0 (2xy, x2 − y2)
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We first set

%1±(A) = 1√
6
(%1(1) +%1(2) +%1(3))± 1√

6
(%1(4) +%1(5) +%1(6)) (109)

%1±(Ex) = 1

2
√

3
(2%1(1)−%1(2)−%1(3))± 1

2
√

3
(2%1(4)−%1(5)−%1(6)) (110)

%1±(Ey) = 1

2
(%1(2)−%1(3))± 1

2
(%1(5)−%1(6)) (111)

%2±(A) = 1√
6
(%2(1) +%2(2) +%2(3))± 1√

6
(%2(4) +%2(5) +%2(6)) (112)

%2±(Ex) = 1

2
(−%2(2) +%2(3))± 1

2
(−%2(5) +%2(6)) (113)

%2±(Ey) = 1

2
√

3
(2%2(1)−%2(2)−%2(3))± 1

2
√

3
(2%2(4)−%2(5)−%2(6)). (114)

The symmetry-adapted functions are then given by

%(A1) ≡ %1+(A) %(B2) ≡ %1−(A)
%1(E2x) ≡ %1+(Ey) %1(E1x) ≡ %1−(Ex)
%1(E2y) ≡ −%1+(Ex) %1(E1y) ≡ %1−(Ey)
%(A2) ≡ %2+(A) %(B1) ≡ %2−(A)
%2(E2x) ≡ %2+(Ey) %2(E1x) ≡ %2−(Ex)
%2(E2y) ≡ −%2+(Ex) %2(E1y) ≡ %2−(Ey)

where the symmetry labels are given as the arguments of the functions on the left-hand side.
This shows that the 12-dimensional secular determinant for Hαλ,α′λ′ will be factorized into

eight factors: four one-dimensional A1, B2, A2, B1, two two-dimensional E2x and E1x, and
two two-dimensional E2y and E1y ones.

The exciton energies for the four one-dimensional representations are easily found:

E(A1) = E1 − 2K1 −K ′1 + 2K1 E(B2) = E1 − 2K1 +K ′1 − 2K1 (115)

E(A2) = E2 − 2K2 −K ′2 + 2K2 E(B1) = E2 − 2K2 +K ′2 − 2K2. (116)

The two eigenvalues of E(E2y) (and E(E2x)) are obtained from the diagonalization of

( %1(E2y) %2(E2y)

%1(E2y) E1 +K1 −K ′1 −K1 3K − 3K

%2(E2y) 3K − 3K E2 +K2 −K ′2 −K2

)
(117)

with the eigenfunctions:

%(νE2) = ν1%1(E2y) + ν2%2(E2y). (118)

Hereafter, the lower- and higher-energy E2 states will be distinguished by ν = − and ν = +,
respectively.

Similarly, the two eigenvalues of E(E1y) (and E(E1x)) are obtained from the diagonal-
ization of

( %1(E1y) %2(E1y)

%1(E1y) E1 +K1 +K ′1 +K1 3K + 3K

%2(E1y) 3K + 3K E2 +K2 +K ′2 +K2

)
(119)

with

%(µE1) = µ1%1(E1y) + µ2%2(E1y). (120)
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We also associate µ = − and µ = + with the lower-energy and higher-energy eigenvalues
obtained here.

At this stage, we see a possible interpretation of the structures of the observed SHG χxxx-
spectra, for example. We expect a pair of lines near each pair of energies E1 and E2 of the
single-ion theory. The two lines on the lower-energy side (∼E2) are likely to correspond to
(µ = −,E1) and (ν = −,E2), while the other two lines with higher energy (∼E1) may be
associated with (µ = +,E1) and (ν = +,E2). As will be seen in the next subsection, all four
states are optically accessible.

5.3. Susceptibilities in exciton modes

The transition moments involved may be calculated as follows:

〈%g|Py |%i〉 =
∑
αλ

〈%g|Py |%λ(α)〉ciαλ =
√
N
∑
αλ

〈ψ0 α|py |ψ0 α λ〉ciαλ (121)

and

〈%i |PyPy |%g〉 =
√
N
∑
αλ

(ciαλ)
∗〈ψ0 α λ|pypy |ψ0 α〉. (122)

The following identities are conveniently used to correlate the matrix elements evaluated at
different sites:

Rϑ(z)pxR
−1
ϑ (z) = px cosϑ + py sin ϑ (123)

Rϑ(z)pyR
−1
ϑ (z) = −px sin ϑ + py cosϑ (124)

where, for example, R2π/3(z) = C3.
The susceptibilities of the system are now given by

(a) ε0Nχ
(1)
yyy =

∑
ν

〈%g|Py |%(νE2)〉〈%(νE2)|PyPy |%g〉
(E(νE2)− 2h̄ω)&E

+
∑
µ

〈%g|Py |%(µE1)〉〈%(µE1)|PyPy |%g〉
(E(µE1)− 2h̄ω)&E

(125)

(b) ε0Nχ
(1)
xxx =

∑
ν

〈%g|Px |%(νE2)〉〈%(νE2)|PxPx |%g〉
(E(νE2)− 2h̄ω)&E

+
∑
µ

〈%g|Px |%(µE1)〉〈%(µE1)|PxPx |%g〉
(E(µE1)− 2h̄ω)&E

. (126)

The transition moments appearing in these equations may be obtained, after somewhat tedious
calculations, by means of equations (121) and (122), as

〈%g|Py |%(νE2)〉/
√
N = −

√
3((P̂y)01 ν1 − (P̂x)02 ν2)

〈%g|Py |%(µE1)〉/
√
N =
√

3((Px)01 µ1 + (Py)02 µ2)
(127)

and

〈%(νE2)|PyPy |%g〉/
√
N =

√
3

2
((P2a)10 ν1 + (P2b)20 ν2)

〈%(µE1)|PyPy |%g〉/
√
N =

√
3

2
((P̂2b)10 µ1 − (P̂2a)20 µ2)

(128)
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in terms of the matrix elements which appeared in the single-ion theory1.
Similarly, we find

〈%g|Px |%(νE2)〉/
√
N = −i

√
3 Im((P̂x)01 ν1 + (P̂y)02 ν2)

〈%g|Px |%(µE1)〉/
√
N =
√

3 Re((Px)01 µ1 + (Py)02 µ2)
(129)

and

〈%(νE2)|PxPx |%g〉/
√
N = −

√
3

2
Re((P2a)10 ν1 + (P2b)20 ν2)

〈%(µE1)|PxPx |%g〉/
√
N = i

√
3

2
Im((P̂2a)10 µ1 + (P̂2b)20 µ2)

(130)

where we choose the E1x component on the right-hand side of equation (120) for %(µE1)

instead of the E1y component. We thus have

(a) ε0χ
(1)
yyy =

3

2

∑
ν

−((P̂y)01 ν1 − (P̂x)02 ν2)((P2a)10 ν1 + (P2b)20 ν2)

(E(νE2)− 2h̄ω)&E

+
3

2

∑
µ

((Px)01 µ1 + (Py)02 µ2)((P̂2b)10 µ1 − (P̂2a)20 µ2)

(E(µE1)− 2h̄ω)&E
(131)

and

(b) ε0χ
(1)
xxx = i

3

2

∑
ν

Im((P̂x)01 ν1 + (P̂y)02 ν2)Re((P2a)10 ν1 + (P2b)20 ν2)

(E(νE2)− 2h̄ω)&E

+ i
3

2

∑
µ

Re((Px)01 µ1 + (Py)02 µ2) Im((P̂2a)10 µ1 + (P̂2b)20 µ2)

(E(µE1)− 2h̄ω)&E
(132)

for the susceptibility per unit cell.
It is interesting to compare these results with those from the single-ion theory, i.e.,

equations (76) and (77).
Equation (131) may finally be written as

(a) ε0χ
(1)
yyy = −i

3

2
c3c′pq〈Sx〉

×
[∑
ν

(ν1λ/&E(1, 4)− ν2λ/&E(2, 3))

(E(νE2)− 2h̄ω)&E

× (ν1vzx/&E(1, 3)− ν2vzx/&E(2, 4))

+
∑
µ

(µ1vzx/&E(1, 3)− µ2vzx/&E(2, 4))

(E(µE1)− 2h̄ω)&E

× (µ1λ/&E(1, 4)− µ2λ/&E(2, 3))

]
. (133)

1 Straightforward application of the Wigner–Eckart theorem to the calculation of the matrix element 〈%g |Py |%(νE2)〉
on the first line of equation (127) and 〈%(µE1)|PyPy |%g〉 on the second line of equation (128) would seem to make
the right-hand sides of these equations vanish. However, this is not correct, because both %(νE2) and %(µE1) are
actually mixed with components brought in through the spin–orbit interaction. It is these perturbed parts that make
the matrix elements in question non-vanishing, as suggested by the expressions on the right-hand side. The same
remark applies to equations (129) and (130).
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Similarly, equation (132) may be put in the form

(b) ε0χ
(1)
xxx = i

3

2
c3c′pq〈Sy〉

×
[∑
ν

(ν1λ/&E(1, 3)− ν2λ/&E(2, 4))

(E(νE2)− 2h̄ω)&E

× (ν1vzx/&E(1, 3)− ν2vzx/&E(2, 4))

−
∑
µ

(µ1vzx/&E(1, 3)− µ2vzx/&E(2, 4))

(E(µE1)− 2h̄ω)&E

× (µ1λ/&E(1, 3)− µ2λ/&E(2, 4))

]
. (134)

The susceptibilities proportional to v̄z are calculated as

(a) ε0χ
(2)
yyy = i

3

2
c2 v̄z

&Ez
p̄q〈Sx〉

∑
µ

(µ1 + µ2)(µ1λ/&E(1, 4)− µ2λ/&E(2, 3))

(E(µE1)− 2h̄ω)&E

(135)

(b) ε0χ
(2)
xxx = i

3

2
c2 v̄z

&Ez
p̄q〈Sy〉

∑
µ

(µ1 + µ2)(µ1λ/&E(1, 3)− µ2λ/&E(2, 4))

(E(µE1)− 2h̄ω)&E
.

(136)

The results obtained here combined together—that is, χααα = χ(1)ααα +χ(2)ααα—will be compared
with observation [16] in the next section.

The expressions for the i-tensors, χzxx and χzzz, in the exciton mode can be obtained
simply by replacing E1 in the denominators of equations (80) and (83) by the exciton energy
E(A1) obtained in section 5.2. The result for χxxz in the exciton mode is given by

χxxz = 3
∑
µ

((Px)01µ1 + (Py)02µ2)((PxPz)10µ1 + (PyPz)20µ2)

(E(µE1)− 2h̄ω)&E
. (137)

The matrix elements appearing in this equation are the same as those in equation (85).
We have obtained the susceptibilities χ(c) in forms proportional to the magnetization

〈Sx〉 or 〈Sy〉 of the Mn1 sublattice and regarded, e.g., 〈Sx〉 as an order parameter in case (a).
According to Birss [12], however, the order parameter in case (a) should be the yyy-component
of a third-rank tensor and made up of a complicated combination of spin components of the
six Mn ions in the unit cell as given by Nedlin [13] or Sa et al [14]. Therefore it will be in
order here to make clear the relation between Birss’s order parameter and our 〈Sx〉.

The spin ordering with symmetry (a), i.e., P6′3cm
′, is described by the order parameter

ψ3 = (σ−1 + σ +
2 )/2 in Nedlin’s notation. Similarly, the ordering with symmetry (b) P6′3c

′m is
described by ψ4 = (−σ−1 + σ +

2 )/2i. Sa et al show with the aid of phenomenological theory
based on symmetry considerations that χ(c)yyy in case (a) and χxxx in case (b) are proportional
to the order parameters ψ3 and ψ4, respectively. The parameter ψ3 (ψ4) behaves like the basis
of the irreducible representation B1 (B2) of C6v. In other words, it transforms like y3 − 3x2y

(x3−3xy2) as shown on the right of table 1, which implies thatψ3 (ψ4) is indeed a component
of a third-rank tensor.

We have mentioned in the above that ψ3 and ψ4 are complicated combination of spin
components. The complexity is, however, only superficial. Let us denote, for example, the
(local) ξi-component of the spin vector Si of Mni by Siξ . Then it is not difficult to show that
they may be expressed in terms of Siξ simply as

ψ3 =
3∑
i=1

Siξ −
6∑
i=4

Siξ (138)
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ψ4 =
3∑
i=1

Siη −
6∑
i=4

Siη (139)

with our choice of local coordinate systems. In the microscopic theory, we replace the class-
ical quantities Siξ , etc, by the corresponding quantum mechanical thermal averages 〈Siξ 〉, etc.
Recalling that the magnetizations of the six sublattices are given by 〈Siξ 〉 = −〈Si+3 ξ 〉 = 〈Sx〉
(i = 1, 2, 3) in case (a), we can set ψ3 = 6〈Sx〉. In a similar way, we obtain ψ4 = 6〈Sy〉 in
case (b). Finally, it is worth pointing out that we have another order parameter ψ ′3 in case (a),
which also transforms like B1 and describes the canting of the spins out of the xy-plane. That
is, we have

ψ ′3 =
3∑
i=1

Siz −
6∑
i=4

Siz (140)

which is also replaced by 6〈Sz〉 in quantum theory.

6. Comparison with experiments

6.1. Clamping of order parameters

We have seen in the previous section that, for example, χyyy consists of two terms proportional
either to vzx or to v̄z besides the sublattice magnetization 〈Sx〉. In other words, it is bilinear with
respect to the two order parameters, electric and magnetic [14], because, in the ferroelectric
(fel) phase, the parameters vzx and v̄z will have different signs in the domains with positive
and negative electric polarization, which are denoted as fel+ and fel−, respectively. Note that
the environment of the Mn1 ion in fel+ is carried into that of the corresponding Mn′1 ion in
fel− by the operation of σh (z→−z) [6]. The magnetic susceptibility regarded as a function
of position will change its sign upon crossing the fel domain boundary even when 〈Sx〉 does
not change its sign. This then implies that, if we only monitor χ(c), the boundary between
fel+ and fel− will be associated (incorrectly) with the boundary of the two neighbouring
antiferromagnetic (afm) domains. The brightness change observed in χ(c) will occur at the
same boundary as that in χ(i). In such cases, we should expect correlations between the
observed fel and afm domain boundaries. Apparently, however, the fel and afm structure do
not influence each other, according to experiments [15]. In order to explain this independence,
we have to assume that the spins S are reversed within a few atomic layers when crossing a
fel border. Let us denote the magnetic domain with S ‖ x and that with S ‖ −x as afm+ and
afm−, respectively. If this happens, the magnetic domain afm+ in fel+, or the combination
(++), the first + being for fel and the second + for afm, and afm− in fel−, or (−−), in contact
with the former, will be observed as a single domain, EM+, extending over the two fel domains
fel+ and fel− which share the boundary.

We summarize our ideas for P6′3cm
′ in table 2.

Note that, in the table, EM+, (++), and (−−), are the domains with + brightness, while
EM−, (+−), and (−+), are those with − brightness. The apparent independence of the fel

Table 2. Clamping of order parameters.

afm+ afm−
fel+ EM+ = (++) EM− = (+−) χ

(i)
zxx > 0

fel− EM− = (−+) EM+ = (−−) χ
(i)
zxx < 0
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and afm structure is attributed to the clamping of the afm order with the fel order, as shown in
the second and third columns of the table. This is in accord with the idea that the electronic
states of the Mn1 and Mn1′ ions, each located near the boundary of the two fel domains in
contact, are connected by the operation of σh, including the spin as well as the orbital state.
We admit that the idea is only an ad hoc assumption and that some more physical reason for
such a relation is necessary. For example, it would be nice if we could show that the reversal
of the spin across the fel domain wall is energetically more favourable. In fact, we have
attempted a computer simulation for the spin reversal, and confirmed for the model adopted
that EM+ (++) in contact with EM+ (−−) can be lower in energy than EM+ (++) in contact
with EM− (−+), if just changes in the values of the exchange integrals of appropriate sign and
magnitude are introduced between the magnetic ions within the walls between the fel+ and
fel− domains. It is not that EM+ (−−) and EM− (−+) have different energies. These two
domains can coexist within a single fel− domain. That is to say, EM+ (−) in one fel domain
can share the fel domain boundary only with an EM+ (−) domain and not with EM− (+) in the
neighbouring fel domain. However, it would be premature to go further into the details of this
model calculation, because, at present, we know almost nothing about the possible structural
change which would take place within those layers and bring about such a change of coupling
parameters for the coupling between the spins.

Anyway, we do not think, within the framework of the present theory, that any other
interpretation is possible for the observed apparent independent behaviours of the two
structures, unless we assume this kind of clamping of order parameters.

6.2. Calculated and observed SHG spectra

We have derived the microscopic expressions for χyyy for case (a) and χxxx for case (b), and
χzxx for both cases in the previous section. In this section, we will calculate the spectra for
these susceptibilities numerically and compare them with the observed ones.

We introduce here the relaxation effects so as to satisfy causality, and express the suscept-
ibilities for both cases from equations (133) to (136) as follows:

(a) χ(1)yyy + χ(2)yyy

∝ −i

[∑
ν

(ν1/&E(1, 4)− ν2/&E(2, 3))(ν1/&E(1, 3)− ν2/&E(2, 4))

E(νE2)− 2h̄ω − i�(νE2)

+
∑
µ

(µ1/&E(1, 3)− µ2/&E(2, 4))(µ1/&E(1, 4)− µ2/&E(2, 3))

E(µE1)− 2h̄ω − i�(µE1)

]

+ ir
∑
µ

(µ1/&E(1, 3) + µ2/&E(1, 3))(µ1/&E(1, 4)− µ2/&E(2, 3))

E(µE1)− 2h̄ω − i�(µE1)

(141)

(b) χ(1)xxx + χ(2)xxx ∝ i

[∑
ν

(ν1/&E(1, 3)− ν2/&E(2, 4))2

E(νE2)− 2h̄ω − i�(νE2)

−
∑
µ

(µ1/&E(1, 3)− µ2/&E(2, 4))2

E(µE1)− 2h̄ω − i�(µE1)

]

+ ir
∑
µ

(µ1/&E(1, 3) + µ2/&E(1, 3))(µ1/&E(1, 3)− µ2/&E(2, 4))

E(µE1)− 2h̄ω − i�(µE1)

(142)
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where

r = 1

cc′

(
v̄z

vzx

)(
p̄

p

)
&E(1, 3)

&Ez
. (143)

Note thatE(νE2) andE(µE1) are the eigenvalues of the matrices (117) and (119), respectively.
Therefore, given parameters Ei (i = 1, 2, 3, 4), Ki,K ′i , Ki (i = 1, 2), K,K , four �s, and r ,
we can readily obtain the SHG spectra from the above equations.

The observation of χ(i) ≡ χzxx gives the position of the excited level at 2.7 eV in all of
the systems [2]. The condition

E(A1) = E1 − 2K1 −K ′1 + 2K1 = 2.7 eV (144)

which follows from equation (115) must be satisfied, because χzxx is given by replacing E1

in the denominator of equation (80) by E(A1) of the present equation. Here and hereafter we
will neglect K ′i and Ki (i = 1, 2) which are inter-layer transfer-matrix elements compared to
the intra-layer ones K1 and K2. Then the splitting of 0.05 eV at around 2.45 eV is estimated
from the perturbational calculation as

E(µ = −,E1)− E(ν = −,E2) = 36KK

E1 +K1 − E2 −K2
. (145)

Five energy parameters, E1, K1, E2, K , and K , have been fixed as shown in table 3 from
these two equations (144) and (145) and the observed three lowest energies as mentioned at
the end of section 5.2. The parameterK2 is set to zero. Three other material constants,E3,E4,
and r , are estimated from the relative magnitudes of the SHG at the second, third, and fourth
peaks to that of the first at 2.46 eV. Incidentally, the value chosen for the energy E4 = 1.57eV
nearly agrees with the location of the absorption edge observed at 1.55 eV [1]. The relaxation
constants are determined so as to reproduce the SHG spectra obtained through the observations
under the specified condition of polarization.

Table 3. The material constants: Ei(i = 1, 2, 3, 4),K1,K,K in eV, which are used in the
numerical calculation of SHG spectra in each case of figure 2.

E1 E2 E3 E4 K1 K K

(a) YMnO3 2.68 2.55 2.1 1.57 −0.01 0.037 −0.011
(a′) HoMnO3 (T = 6 K) 2.68 2.57 2.1 1.57 −0.01 0.045 −0.014
(b) ErMnO3 2.68 2.57 2.15 1.57 −0.01 0.045 −0.014
(b′) HoMnO3 (T = 50 K) 2.68 2.57 2.1 1.57 −0.01 0.045 −0.014

Table 4. The material constants: r and the �s in eV, which are used in the numerical calculation
of the SHG spectra for each case of figure 2.

r �(−,E2) �(−,E1) �(+,E1) �(+,E2)

(a) YMnO3 0 0.027 0.048 0.18 0.18
(a′) HoMnO3 (T = 6 K) 0 0.035 0.05 0.3 0.3
(b) ErMnO3 −5.3 0.03 0.03 0.17 0.17
(b′) HoMnO3 (T = 50 K) −5.8 0.028 0.028 0.16 0.16

Figure 2 shows the SHG spectra associated with the non-linear susceptibilities χ(c) of
(a) YMnO3, (b) ErMnO3, (a′) HoMnO3 (T = 6 K), and (b′) HoMnO3 (T = 50 K). Cases
(a) and (a′) correspond to χyyy , and cases (b) and (b′) to χxxx . In the figure, dots show the
experimental data and lines correspond to the numerical data.
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Figure 2. The SHG spectra associated with the non-linear magnetic susceptibilities of (a) YMnO3,
(b) ErMnO3, (a′) HoMnO3 (T = 6 K), and (b′) HoMnO3 (T = 50 K). Dots show the experimental
results and lines the numerical ones. The material constants have been fixed as shown in tables 3
and 4.

Now we can understand microscopically the observed SHG spectra of both cases (a) and (b)
as follows. First, the two lowest levels by which the SHG is enhanced by two-photon resonance
consist of E(ν = −,E2) = 2.45 eV and E(µ = −,E1) = 2.51 eV for both (a) YMnO3 and
(b) ErMnO3. These two signals, however, interfere constructively in case (a) and destructively
in case (b). This difference originates from the different relative magnitudes r (∝v̄z/vzx) of
the second to the first term in equations (141) and (142), which correspond, respectively, to
cases (a) and (b). We have chosen r = 0 for case (a) and r = −5.3 for case (b). Second, two
higher levels, E(µ = +,E1) and E(ν = +, E2), located at around 2.7 eV are observed with
much stronger intensity but larger relaxation in the SHG spectra of case (b), while the SHG
signals are almost negligible in case (a) as shown in figure 2(a) and figure 2(a′). This is also
due to the different values of r in cases (a) and (b).

The same description applies to the cases of the low-temperature phase (6 K) and
the high-temperature phase (50 K) of HoMnO3, respectively, as shown in figure 2(a′) and
figure 2(b′).

Two minor deviations remain between the observed and calculated SHG spectra: the
observed weak shoulders on the lower-energy side below 2.4 eV and the observed sharper
dip due to the destructive interference in figure 2(b) and figure 2(b′). In spite of these two
minor deviations, we have succeeded in understanding the following important observations:
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(1) Only χyyy is finite in a form linearly proportional to a product of the sublattice mag-
netization 〈Sx〉 and ferroelectric order vzx or v̄z for cases (a) YMnO3 and (a′) HoMnO3

(T < 42 K), while only χxxx is finite in proportion to 〈Sy〉 and vzx (or v̄z) for cases
(b) ErMnO3 and (b′) HoMnO3 (42 K < T < 71 K) under two-photon resonant excitation
around 2.5 eV.

(2) The two SHG signals at 2.45 eV and 2.51 eV interfere constructively for cases (a) and (a′)
while they interfere destructively for cases (b) and (b′).

(3) Further, if we assume that the factors omitted in equations (141) and (142) are of the same
order of magnitudes and compare the intensity of the spectra in figures 2(a) and 2(a′) to
those in figures 2(b) and 2(b′), we find that the former intensities are stronger than the
latter ones, although we have given them in arbitrary units in figure 2. This seems to be
the case for the observation [3].

(4) Finally, the SHG signals at around 2.7 eV are almost negligible in cases (a) and (a′), while
they become of the same order of magnitude as those at the lower energies at 2.45 eV and
2.51 eV for cases (b) and (b′).

7. Discussion and conclusions

As mentioned in section 1, the SHG spectra of RMnO3 pose several interesting problems.
First of all, there is the problem of the electronic structure of the Mn ions in this crystal. The
Mn3+ ions are surrounded by an unusual coordination of five O2− ions. We have assumed
an ordering of the energy levels that is almost the same as that proposed in reference [1].
The results obtained in this paper seem to support the assumption. Next, we encounter the
appearance of non-vanishing susceptibilities χ(c) in the antiferromagnetic phase. If we only
watch the Mn and their spins, the Mn sublattice in this phase has inversion symmetry (as long
as we neglect the canting of spins in the P6′3cm

′ phase) and it seems that there will be no
SHG. However, it is, of course, not correct to confine our attention just to the Mn sublattice.
We have to take into account the full crystal symmetry, where there is no inversion centre in
the ferroelectric phase. We have indeed found that non-vanishing χ(i) as well as χ(c) resulted
from the presence of the low-symmetry fields V (E1a) ∝ zx and V (B2) ∝ z around Mn1

ions. The appearance of these fields corresponds to the loss of the centre of inversion in
the ferroelectric phase. The latter susceptibilities χ(c) were found to be proportional to the
sublattice magnetizations in the present treatment. Our results show that the lower-symmetry
case of P6′3 can be derived by a combination of cases (a) and (b), (a) describing the 〈Sx〉
component and (b) the 〈Sy〉 component. The two cases do not mix—that is, spin x- and y-
components are decoupled. We can predict this independent behaviour of the spin components
and it has, in fact, been confirmed by a recent experiment [5]. This brings in the third problem,
i.e., the apparent independent behaviours of fel and afm structures observed and discussed in
section 6.1. Although we have proposed a possible interpretation, i.e., the clamping of two
order parameters, the problem still remains a topic to be investigated further. The fourth is the
two peaks of the SHG spectra found in the region of 2.45 eV. As shown in sections 5 and 6,
the exciton theory appears to provide us with a reasonable explanation.

The sublattice magnetizations 〈Sx〉 and 〈Sy〉 of the Mn1 ion are correlated with the
crystalline structure change of HoMnO3 at 42 K as well as the difference between YMnO3 and
ErMnO3. Our understanding is that this difference may be attributed to the relative magnitude
of the lower-symmetry crystalline fields V (B2) and V (E1a) which act on Mn ions in the
electronic ground state. This is because the spectroscopic difference in SHG between cases
(a), P6′3cm

′, and (b), P6′3c
′m, originates from the different relative magnitudes of v̄z/vzx as

indicated by the values of r .
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The third problem, the clamping of the ferroelectric and antiferromagnetic order
parameters, should be verified by the following experiments now in preparation2.

(1) If the model is correct, we should observe reversal of brightness or contrast of the
SHG signal in (a) YMnO3, i.e., EM± → EM∓, while the contrast will not change in
(b) ErMnO3, EM±→ EM±, when thin samples are rotated by π around the x-axis. In
these experiments, an external reference is involved which leads to differing brightness
due to the differing interference for different domains.

(2) When the samples are rotated around the y-axis, we expect reversal of contrast in ErMnO3,
but not in YMnO3. If there is no clamping, opposite behaviours of the contrast would be
observed, and this would allow us to reject the possibility of a bilinear dependence of χ
on the two order parameters.

While the present paper was in preparation, the work by Wan et al [17] appeared. These
authors also deal with the non-linear susceptibilities χxxx , etc, for YMnO3, within the multi-
band Hubbard model, taking into account the charge transfer between O2− and Mn3+ in addition
to the d–d transitions. They, however, assume perovskite instead of hexagonal structure,
besides neglecting the spin–orbit interaction which is essential in our treatment for producing
the susceptibility tensors χ(c) with correct selection rules, so it is not conceivable that their
theory will be able to explain the observation, i.e., non-vanishing χ(c)yyy in P6′3cm

′ (YMnO3)
and χ(c)xxx in P6′3c

′m (ErMnO3).
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Appendix A. The mechanism of exciton transfer

In order to discuss the excitation transfer between Mn ions, we first give the Slater determinants
for the electronic states given in section 3, expressed in terms of the one-electron orbitals
ϕzx , etc:

�zx = +|ϕzy, ϕx2−y2 , ϕ−2xy, ϕz2 | (A.1)

�zy = −|ϕzx, ϕx2−y2 , ϕ−2xy, ϕz2 | (A.2)

�x2−y2 = +|ϕzx, ϕzy, ϕ−2xy, ϕz2 | (A.3)

�−2xy = −|ϕzx, ϕzy, ϕx2−y2 , ϕz2 | (A.4)

�z2 = +|ϕzx, ϕzy, ϕx2−y2 , ϕ−2xy | (A.5)

where spins are assumed to be quantized along appropriate local axes. The matrix elements
of the angular momenta connecting the ground and excited states are easily found as

〈�zx |Ly |�z2〉 = −〈z2|Cy |zx〉 = +i
√

3 (A.6)

〈�zy |Lx |�z2〉 = −〈z2|Cx |zy〉 = −i
√

3. (A.7)

Let us denote the integral for transfer between orbitals 1 and 2 by t (1, 2). The result of
the second-order perturbation corresponding to the excitation transfer between Mn1 (excited,

2 This idea is due to M Fiebig and the experiments are going to be carried out at Dortmund.
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site 01) and Mn2 (de-excited, site n2) shown in figure A1 leads to the following expression for
the interaction term in the Hamiltonian:

H′12 = −
∑
σ,σ ′

t (2′, 1′)t (1, 2)
&E(1← 2)

ξ
†
2′σ ′ξ1′σ ′ξ

†
1σ ξ2σ −

∑
σ,σ ′

t (1, 2)t (2′, 1′)
&E(2′ ← 1′)

ξ
†
1σ ξ2σ ξ

†
2′σ ′ξ1′σ ′ (A.8)

in the second-quantized form, where ξ †
1σ and ξ1σ are, respectively, the creation and annihilation

operators for the electron in the orbital 1 with spin σ .
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✻

✻
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Figure A1. Excitation transfer between ions Mn1 and Mn2.

The right-hand side of this equation may be rewritten as

H′12 = k(12′, 1′2)
(

1

2
n̂11′ n̂2′2 + 2s1n̂11′ · s2n̂2′2

)
(A.9)

where

k(12′, 1′2) = t (2
′, 1′)t (1, 2)

&E(1← 2)
+
t (1, 2)t (2′, 1′)
&E(2′ ← 1′)

(A.10)

with

n̂11′ =
∑
σ

ξ
†
1σ ξ1′σ (A.11)
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and

s1n̂11′ =
∑
σ,σ ′
〈σ |s|σ ′〉ξ †

1σ ξ1′σ ′ . (A.12)

If we set

|1′〉 = ϕzx(01) |1〉 = ϕz2(01) (A.13)

|2′〉 = ϕzξ (n2) |2〉 = ϕz2(n2) (A.14)

we find

n̂11′ =
∑
σ

〈z2|Cy |zx〉ξ †
1σ ξ1′σ /(−i

√
3) (A.15)

n̂2′2 =
∑
σ

〈zξ |Cη|z2〉ξ †
2′σ ξ2σ /(+i

√
3) (A.16)

so we obtain

W01,n2 = kxξw(1y, 2η) + kyηw(1x, 2ξ)− kxηw(1y, 2ξ)− kyξw(1x, 2η) (A.17)

for the expression forW01,n2 in equation (98) of section 5.2, where, for example,

w(1y, 2η) = 1

3

{
1

2
C1yC2η + 2s1C1y · s2C2η

}
(A.18)

and kxξ ≡ kxξ (01, n2), etc, are defined by

kxξ = k(01zx n2z2, 01z2 n2zξ) kyη = k(01zy n2z2, 01z2 n2zη) (A.19)

kxη = k(01zx n2z2, 01z2 n2zη) kyξ = k(01zy n2z2, 01z2 n2zξ). (A.20)

Note that we may set

w(1y, 2η) = 1

3
F12Ly(01)Lη(n2) (A.21)

in terms of the components of the total orbital angular momenta with

F12 = 1

2
+ 2S1 · S2/16 (A.22)

in equation (A.18), because s = S/4. Note that F12 = F15 = 1/4, F14 = 1 in the classical
approximation.
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